_
_
_
_
_

Hilda Hudson, la primera conferenciante en el gran congreso internacional de matemáticas

La experta en geometría algebraica también fue pionera en modelizar la evolución de las epidemias

Hilda Hudson Congreso Internacional de Matemáticas
Uno de los eventos históricos del Congreso Internacional de Matemáticas.National Library of Norway

Podemos imaginarnos la sorpresa de los asistentes al Congreso Internacional de Matemáticos (ICM, por sus siglas en inglés) en 1912 en Cambridge (Reino Unido) cuando Hilda Hudson expuso su trabajo. Ella aparecía en el programa simplemente como acompañante de su padre, pero, al impartir la conferencia On binodes and nodal curves (sobre los binodos y curvas nodales), se convirtió en la primera mujer en hablar en un ICM, el congreso más importante en matemáticas.

El evento se celebra cada cuatro años para presentar y discutir los avances más relevantes del momento y en él se concede la Medalla Fields, galardón que informalmente se considera el “Premio Nobel de las matemáticas”. En el encuentro anterior, en 1908, Laura Pisati había sido invitada, pero falleció poco antes de la celebración del congreso.

Hilda Hudson nació el 11 de junio de 1881 en una familia donde se respiraba la pasión por las matemáticas: su padre, William Hudson (1838-1915) fue profesor en Cambridge (St. Catherine’s College y St. John’s College) y en Londres (King’s College y Queen’s College). Su hermano mayor, Ronald W. H. T. Hudson (1876-1904) era un prometedor geómetra, pero falleció joven en un accidente de escalada. Tanto su madre como su hermana mayor estudiaron matemáticas, en el Newnham College de Cambridge, la misma institución en la que se formó Hilda. Al finalizar allí sus estudios, pasó un año en Berlín, estudiando con grandes matemáticos: Hermann Schwarz, Friedrich Schottky y Edmund Landau.

Hilda Phoebe Hudson
Hilda Phoebe Hudson

Entre 1905 y 1913 dio clases en diversas universidades: en el Newnham College, en el Bryn Mawr College en EE UU (donde coincidió con Charlotte Angas Scott, otra matemática pionera), y el West Ham Technical Institute, en Londres. Durante la Primera Guerra Mundial trabajó para el Ministerio del Aire, publicando artículos sobre la resistencia estructural de los aviones. Entre 1919 y 1921 trabajó como asistente técnica para Parnell and Company en Bristol, tras lo cual se retiró para dedicarse a la escritura de su obra principal, el libro Transformaciones de Cremona del plano y del espacio, publicado en 1927 y reeditado en 2012.

Su principal campo de investigación fue la geometría algebraica, en concreto las llamadas transformaciones de Cremona del plano y del espacio. Estas son transformaciones entre dos planos (o espacios) dadas por ecuaciones que son fracciones de polinomios. En particular, puede haber puntos del plano donde la fracción tome el valor 0/0 y esté indeterminada (más precisamente, su valor depende de la dirección en la que nos aproximamos).

Las transformaciones de Cremona son un ejemplo particular de las transformaciones biracionales. Estas permiten dividir el problema de clasificar los objetos geométricos algebraicos en dos pasos: primero se hace una clasificación más general, permitiendo transformaciones con indeterminaciones como 0/0, y después se realiza un análisis más detallado, exigiendo que las transformaciones estén bien determinadas en todos los puntos. Esta estrategia de dividir un problema de clasificación en varios pasos es la misma que siguió, por ejemplo, Carlos Linneo en biología: en un primer paso dividió los seres vivos en animales y plantas; después en vertebrados/invertebrados o si tienen o no flores, etc.

Aspecto local de una transformación de Cremona (z=y/x), el punto central (abajo) se transforma en la recta vertical (arriba).
Aspecto local de una transformación de Cremona (z=y/x), el punto central (abajo) se transforma en la recta vertical (arriba).Tomás Luis Gómez de Quiroga

La geometría biracional, que estudia estas transformaciones, sigue siendo un campo muy activo. Por ejemplo, el matemático kurdo-iraní Caucher Birkar obtuvo la medalla Fields en 2018 por sus avances en estas cuestiones.

Hudson también se interesó por las aplicaciones de las matemáticas. Además de su labor en aeronáutica, en 1917 publicó, junto con Ronald Ross, premio Nobel de medicina en 1902, un trabajo pionero sobre la modelización matemática de la evolución de las epidemias. Este escrito es considerado la base sobre la que se construyeron los modelos posteriores. En concreto, sirvió de inspiración a Alfred Lotka para definir, en 1923, el factor R, del que tanto se habló durante la pandemia de la COVID-19 y que mide cuanto aumenta o disminuye el número de infectados.

Mujer profundamente religiosa (estuvo involucrada en el Movimiento Estudiantil Cristiano), para ella la investigación era una actividad pasional y mística. En el artículo Matemáticas y eternidad afirmaba: “Los pensamientos matemáticos puede que no sean los más interesantes ni importantes de los pensamientos de Dios, pero son los únicos que podemos conocer con exactitud”. También describía la emoción que sentimos los matemáticos cuando comprendemos una demostración, comparándola con la revelación de un aspecto de Dios: “[Cuando comprendo un razonamiento matemático], una visión aparece, de Dios encarnado en ese teorema”.

Hudson falleció el 26 de noviembre de 1965 en Londres y qué mejor manera de recordarla que leyendo sus propias palabras sobre la eternidad: “Bien podría ser que, en la eternidad, este salto de comprensión [el instante en el que uno entiende una demostración] será todo lo que quede del razonamiento matemático; contemplaremos las matemáticas en su totalidad y veremos ese aspecto de Dios, con el que ya nos habremos familiarizado,

Non dimostrato, ma fia per sè noto,

A guisa del ver primo, che l’uom crede”.

Tomás Luis Gómez de Quiroga es investigador científico del Consejo Superior de Investigaciones Científicas en el Instituto de Ciencias Matemáticas

Café y Teoremas es una sección dedicada a las matemáticas y al entorno en el que se crean, coordinado por el Instituto de Ciencias Matemáticas (ICMAT), en la que los investigadores y miembros del centro describen los últimos avances de esta disciplina, comparten puntos de encuentro entre las matemáticas y otras expresiones sociales y culturales y recuerdan a quienes marcaron su desarrollo y supieron transformar café en teoremas. El nombre evoca la definición del matemático húngaro Alfred Rényi: “Un matemático es una máquina que transforma café en teoremas”.

Edición y coordinación: Ágata Timón (ICMAT).

Puedes seguir a MATERIA en Facebook, Twitter e Instagram, o apuntarte aquí para recibir nuestra newsletter semanal.

Más información

Archivado En

Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
_
_